"FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks"
ثبت نشده
چکیده
Optical flow color coding. For optical flow visualization we use the color coding of Butler et al. [3]. The color coding scheme is illustrated in Figure 1. Hue represents the direction of the displacement vector, while the intensity of the color represents its magnitude. White color corresponds to no motion. Because the range of motions is very different in different image sequences, we scale the flow fields before visualization: independently for each image pair shown in figures, and independently for each video fragment in the supplementary video. Scaling is always the same for all methods being compared.
منابع مشابه
"FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks"
Optical flow color coding. For optical flow visualization we use the color coding of Butler et al. [3]. The color coding scheme is illustrated in Figure 1. Hue represents the direction of the displacement vector, while the intensity of the color represents its magnitude. White color corresponds to no motion. Because the range of motions is very different in different image sequences, we scale t...
متن کاملEV-FlowNet: Self-Supervised Optical Flow Estimation for Event-based Cameras
Event-based cameras have shown great promise in a variety of situations where frame based cameras suffer, such as high speed motions and high dynamic range scenes. However, developing algorithms for event measurements requires a new class of hand crafted algorithms. Deep learning has shown great success in providing model free solutions to many problems in the vision community, but existing net...
متن کاملSecrets in Computing Optical Flow by Convolutional Networks
Convolutional neural networks (CNNs) have been widely used over many areas in compute vision. Especially in classification. Recently, FlowNet and several works on optical estimation using CNNs shows the potential ability of CNNs in doing per-pixel regression. We proposed several CNNs network architectures that can estimate optical flow, and fully unveiled the intrinsic different between these s...
متن کاملIntegration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery
The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017